Spatio-Temporal Relationship between Water Depletion and Root Distribution Patterns of Centaurea solstitialis and Two Native Perennials

نویسندگان

  • Stephen L. Young
  • Guy B. Kyser
  • Jacob N. Barney
  • Victor P. Claassen
  • Joseph M. DiTomaso
چکیده

In a 2-year field study, we quantified lateral root growth patterns and soil water depletion dynamics in the invasive annual Centaurea solstitialis and two native perennials, Elymus glaucus and Grindelia camporum. Centaurea solstitialis produced lateral roots most actively from early April to mid-June, during the late rosette to spiny seedhead stage while both root growth and water depletion were completed before flowering. In the wet year, roots were evenly distributed throughout the soil profile to 180 cm deep. Lack of deep soil moisture recharge in the second year restricted root distribution to shallow soil depths (< 60 cm). In contrast to C. solstitialis, living roots of the native perennials persisted throughout the year. Elymus glaucus roots were most abundant (47% of total roots) in the upper soil profile (≤ 60 cm) in the wet year, but most abundant (55%) in the lower profile (≥ 150 cm) in the dry year. However, the distribution of G. camporum roots was comparable between the 2 years. This indicates that in years with little to no deep soil moisture recharge, C. solstitialis roots are distributed in the shallow soil profile similar to annual grasses, whereas in wetter years it is similar to deep-rooted perennial species. We also show that C. solstitialis impacts grassland communities by depleting soil moisture during the short period of lateral root growth from the late rosette to the spiny stage. Therefore, control of C. solstitialis early in the season is critical during native plant restoration where success depends upon available soil moisture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-Temporal Relationship between Water Depletion and Root Distribution Patterns of <i>Centaurea solstitialis</i> and Two Native Perennials

In a 2-year field study, we quantified lateral root growth patterns and soil water depletion dynamics in the invasive annual Centaurea solstitialis and two native perennials, Elymus glaucus and Grindelia camporum. Centaurea solstitialis produced lateral roots most actively from early April to mid-June, during the late rosette to spiny seedhead stage while both root growth and water depletion we...

متن کامل

The Role of Light and Soil Moisture in Plant Community Resistance to Invasion by Yellow Starthistle (Centaurea solstitialis)

To resist establishment by an invasive plant, a community may require one or more species functionally similar to the invader in their resource acquisition pattern. In this study, communities consisting of native winter annual forbs, non-native annual grasses, native perennials, or a combination of the two native communities were established with and without Centaurea solstitialis to determine ...

متن کامل

The Role of Light and Soil Moisture in Plant Community Resistance to Invasion by Yellow Starthistle (<i>Centaurea solstitialis</i>)

To resist establishment by an invasive plant, a community may require one or more species functionally similar to the invader in their resource acquisition pattern. In this study, communities consisting of native winter annual forbs, non-native annual grasses, native perennials, or a combination of the two native communities were established with and without Centaurea solstitialis to determine ...

متن کامل

Centaurea solstitialis Invasion Success Is Influenced by Nassella pulchra Size

Replacement of perennial grasses with non-native annual grasses in California’s Central Valley grasslands and foothills has increased deep soil water availability. Yellow starthistle (Centaurea solstitialis), a deep-rooted invasive thistle, can use this water to invade annual grasslands. Native perennial bunchgrasses, such as Purple needlegrass (Nassella pulchra), also use deep soil water, so t...

متن کامل

Functionally Similar Species Confer Greater Resistance to Invasion: Implications for Grassland Restoration

Plant community functional composition can be manipulated in restored ecosystems to reduce the establishment potential of invading species. This study was designed to compare invasion resistance among communities with species functionally similar or dissimilar to yellow starthistle (Centaurea solstitialis), a late-season annual. A field experiment was conducted in the Central Valley of Californ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013